

Algae for wastewater treatment

Janja Zule, Gabriele Weinberger, Alp Ergünsel, Quentin Thiebaut

GZS, 19. junij 2013

Contents

- 1. Overview of project basics, aim, consortium, topics, execution
- 2. Materials and Trials
- 3. Summary of results
 - 1. Cultivation
 - 2. Degradation performance
 - 3. Algae-Bacteria-Biomass characteristics
- 4. Pilot plant operation
- 5. Summary

Project basics and aim

Title: Combined <u>algal</u> and <u>ba</u>cterial waste water treatment for high environmental <u>qua</u>lity effluents (ALBAQUA)

Project consortium

Trials – overview lab scale tests

Cultivation

- Isolation of algae from paper mill effluents
- Cultivation and pre-selection of suitable algae species

Design parameters

- Continuous operation of a lab scale waste water treatment unit
- Operated with real waste water of a paper mill wwtp
- Varying operating parameters
- Trials so far: with chlorella vulgaris

Results – algae isolation and cultivation

ALBAQUA

Example: algae observed in paper mill effluent

Biotechnological effluent treatment

Isolation: dilution method by plating on agar plates

Re-suspension in medium of the isolated cells after plating

6 algae species suitable for paper industry effluent treatment found

Der Forschung | Der Lehre | Der Bildung

Trials – lab scale plants

Trials – overview lab scale tests

Nearly similar operating conditions in all bioreactors Currently all trials with *chlorella vulgaris*

Trials – operating conditions and parameters

Operating parameter	Lab scale trials Pilot trials		
F/M	0,05–0,1 kg BOD ₅ /(kg dsm.d)	0,03 – 0,09 BOD : VS	
HRT	2–5 d	2 d, 3,8 d, 1,8 d	
DSM	0,3–2,5 g/l	0,5 – 2,5 g/l	
nutrition load	C:N:P = 1100:6:0,5		
O ₂ concentration	2–6 mg/l (supplied by algae – no aeration)	2–8 mg/l (supplied by algae – no aeration)	
temperature/pH	T 25 – 30°C; pH 7,5-8,5	T 15 – 30°C; pH 7,5-9,5	
lighting	10:14 h and 12:12 h	natural daylight	
measured parameter	Chl-a, DSM, COD, BOD ₅ , TOC, NH ₄ , NO ₃ , NO ₂ , PO ₄		
	(partly: microorganism composition) TOC (DOC)		
calculated parameter	HRT, F/M, SRT, algae:bacteria ratio		

Results – examples effluent degradation

Results – summary effluents degradation

1 N					Aeration	µg/ml	O ₂
n l v	Maah nuln waata nanar I		٢	80 %	(9	()	(9
1 Mech. pulp, waste paper	printing papers	٢	70 %	٢	≤ 12	©	
2	pulp, waste paper	wood containing	C	65 %	9		9
3		coated printing paper	٢	80%	(9	9	(9
4	waste paper	board	0	70 %	٢	≤ 16	Ü
5	pulp	Woodfree graphic paper	0	76 %	©	≤ 14	Ü
6	waste paper	board	Û	72 %	©	≤ 23	©
7	waste paper	board	©	70 %	©	≤ 12	Ö
8	waste paper, pulp	Woodfree graphic paper	Ö	76 %	٢	≤ 12	©
9 v	waste paper, mech. pulp	Newsprint	0	65 %	0	≤ 16	•

Results - sedimentation of algae-bacteria-biomass

before

after 2h

SVI: 30-40 ml/g

Good settling conditions

Results - microscopic investigation

Results – algae-bacteria biomass characteristics

Parameter	Mixed sludges	Activated sludge	Algae
Ash (%)	35 - 68	44	9
C (%)	23 - 34	36	46
N (%)	2,6 – 5,7	4,4	7,8
P (%)	2,0 – 3,9	2,2	4,4
Algae (%)	2,0 – 24	/	/
Heating value (MJ/kg)	8 - 12	7	25,8 (Scenedesmus) 29 (Chlorella)

Trials –pilot plant

13-06-27

PTS THE PAPER TECHNOLOGY SPECIALISTS

Trials – overview pilot system and operation

Capacity bioreactor	340		
Start-up	Initial batch tests Continuous operation Aug-Nov		
Sampling	1x per batch cycle:	2x per week:	
	input and output water active biomass waste sludge	input and output water active biomass waste sludge	
Operation conditions	mixing, pH, temp., conduct.redox, O ₂ , settling time,degradation performance	Optimization of operation conditions:	
PTS TECH	INOLOGY 13-06-27 ALISTS	I	

Characteristics Slovenian paper mill

Production printing paper (primary fibers, different programs)

wwtp chemo-mechanical waste water treatment volume of treated water: 3,000 m³/day, 1,065,000 m³/year volume of sludge produced: 1,800 t/year

Effluent quality		Limit output values
Suspended solids COD BOD N, P total pH Temperature	15 mg/l 50 – 400 mg/l ** — 20 – 80 mg/l ** — < 3 mg/l 7 30 – 39 ° C	80 mg/l → 110 mg/l → 20 mg/l N (15 mg/l); P (3 mg/l)

Results – pilot operation

COD (mg/L) IN, OUT 400,0 300,0 200,0 100,0 .0 25 30 14 24 29 19 24 20 19 14 4 9 A 9

BOD (mg/L) IN, OUT

ALBAQUA Biotechnological effluent treatment

Lessons learned

- •Algal bacterial community develops into a natural mix
- •Sufficient oxigenation is easily achieved with large margin
- Major threat: Chironomidae larvae consume the sludge (algae first)
 physical barriers (cover, insect net), occasional violent mixing and/or biological agents (Bti, Bs) integrated into the bacterial sludge
- •Some additional (clean) algae inoculation will be necessary
- •Insolation is **not** a major constraint, temperature and mixing are more important
- •Flocculation is easy; thinking of more violent mixing to prevent insects, flocculation and sedimentation in the reactor and have more time for the flocculation in the sedimenter
- •On-line control of nutrients and Chl a will be required
- •Sludge is being tested for biogas (with good preliminary results)

Recommendations for operation

- HRT between 1-3 day(s) depending of the wastewater COD
- For highly polluted wastewaters (COD over 800 mg/l) this system can not be suggested.
- > A biomass conc. 1.5 2.5 g/l and a SRT of 16-20 days favour the algae growth.
- > A sedimentation time of 2 3 hours can be selected.
- Since there are no blowers in the system, stirrers are needed to keep the flocs suspended → dead zones have to be avoided.
- \succ O₂ and pH of the system should be monitored.
- > The colour of the system is a good indicator of system health.
- Intermittent aeration with blowers will favour the heterotrophic bacteria in the system and therefore it has to be avoided.

Summary

- good settling of algal-bacterial biomass most of the time and for most treated effluents from paper industry
- good degradation results
- no external aeration necessary in algae-bacteria-bioreactors; sufficient O₂ concentration for bacterial heterotrophic degradation activity supplied by algae photosynthesis activity
- extrusion/devour of algae by excess bacterial biomass growth under operating conditions of

HRT<24 h, DSM_{total} > 3 g/l, B_{TS} > 0,25 kg BSB_5 /(kg TS d)

- unsatisfactory settling of algae on carriers/extrusion of algae by bacterial biomass
- Necessity of operation of covered/closed bioreactor system under natural conditions due to serious contamination problems (larvae)

Thank you for your kind attention!

Dipl.-Ing. (FH) Gabriele Weinberger

PTS

Ressourcenmanagement – Wasser und Energie Heßstr. 134 80797 München

Tel.: 089/12146-463 Email: <u>gabriele.weinberger@ptspaper.de</u>

In collaboration with

Janja Zule, ICP-TCP Ljubljana, Slovenia janja.zule@icp-lj.si

Alp Ergünsel, TU Hamburg-Harburg, Germany erguensel@tu-harburg.de

Quentin Thiebaut, Celabor, Belgium quentin.thiebaut@celabor.be

